Substitution on infinite alphabets and generalized Bratteli-Vershik models

Shrey Sanadhya

University of Iowa

Joint work with Sergii Bezuglyi and Palle Jorgensen

March 10, 2021

Shrey Sanadhya (Ulowa)

B-V model for infinite substitutions

March 10, 2021

Plan for this talk

• Introduction to Bratteli diagrams and generalized Bratteli diagrams

Cantor d.s

Bord dis

- Two versions of Kakutani-Rokhlin tower construction for a class of substitution dynamical systems on a countably infinite alphabets (known as left determined substitution).
- Bratteli-Vershik (B-V) models for such substitution dynamical systems.
- Using the Bratteli-Vershik model we find explicit expressions for invariant and ergodic measures for such substitution dynamical system.

Preliminaries

- Let A be a countably infinite set, called an *alphabet*. We denote by A^ℤ the bi-infinite sequence (x_i)_{i∈ℤ} on A.
- \bullet Note that $\mathcal{A}^{\mathbb{Z}}$ is a non-compact Polish space.
- For $x \in \mathcal{A}^{\mathbb{Z}}$ we denote by $\mathcal{L}_n(x)$, the set of all words of length n in x.
- Language of x is defined by $\mathcal{L}(x) := \bigcup_{n \in \mathbb{N}} \mathcal{L}_n(x)$.
- A substitution σ on A is a map from A to A⁺ (the set of finite non-empty words on A), which associates to the letter a ∈ A the word σ(a) ∈ A⁺, with length h_a := |σ(a)| < ∞.
- We define *language of a substitution* σ by : $\mathcal{L}_{\sigma} = \{ \text{factors of } \sigma^{n}(a) : \text{for some } n \geq 0, a \in \mathcal{A} \}.$

• Define
$$X_{\sigma} = \{x \in \mathcal{A}^{\mathbb{Z}} : \mathcal{L}(x) \subset \mathcal{L}_{\sigma}\} \subset \mathcal{A}^{\mathbb{Z}}.$$

Preliminaries cont.

- The *left shift* $T : \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$, is defined by $(Tx)_k = x_{k+1}$, for all $k \in \mathbb{Z}$.
- X_{σ} is a Polish space and is closed under T. We call (X_{σ}, T) the subshift associate with substitution σ .
- (X_{σ}, T) is Borel dynamical system i.e. T is a homeomorphism of Polish space.
- For a finite string $\overline{x} = (x_0, ..., x_n)$ of length n, denote by $[\overline{x}]$ a cylinder set : $[\overline{x}] := \{y = (y_i) \in X_{\sigma} : y_0 = x_0, ..., y_n = x_n\}.$
- We say that σ is of bounded length if there exists an integer $C \ge 2$ such that for every $a \in A$, $|\sigma(a)| \le C$. n = 1 $\sigma(x)$

By identifying A with Z, we say that σ is of bounded size, if it is of bounded length and there exists a positive integer t (independent of n and minimal possible), such that for every n ∈ Z, if m ∈ σ(n), then m ∈ {n-t,...,n,...,n+t}. z + 1

Shrey Sanadhya (Ulowa)

Left determined substitution on infinite alphabet

Definition ([Ferenczi 2006]). We say that a substitution σ on a countable alphabet \mathcal{A} is left determined if there exists $N \in \mathbb{N}$ such that, any word $w \in \mathcal{L}_{\sigma}$ of length at least N, has a unique decomposition $w = w_1....w_s$, such that each $w_i = \sigma(a_i)$ for unique $a_i \in \mathcal{A}$, except that w_1 may be a suffix of $\sigma(a_1)$ and w_s may be a prefix of $\sigma(a_s)$.

$$(w) = N \qquad w = \underbrace{\underbrace{b_1 \ b_2 \ b_3}}_{\text{suffix of}} \underbrace{\underbrace{b_4 \ b_5 \ b_6 \ b_7}}_{= \sigma(a_2)} \dots \underbrace{\underbrace{b_{N-4} \ b_{N-3} \ b_{N-2}}_{= \sigma(a_{s-1})}}_{= \sigma(a_{s-1})} \underbrace{\underbrace{b_{N-1} \ b_N}_{\text{prefix of}}}_{\text{cm} \ \sigma(a_s)}$$

Left determined substitution on infinite alphabet

Definition ([Ferenczi 2006]). We say that a substitution σ on a countable alphabet \mathcal{A} is left determined if there exists $N \in \mathbb{N}$ such that, any word $w \in \mathcal{L}_{\sigma}$ of length at least N, has a unique decomposition $w = w_1....w_s$, such that each $w_i = \sigma(a_i)$ for unique $a_i \in \mathcal{A}$, except that w_1 may be a suffix of $\sigma(a_1)$ and w_s may be a prefix of $\sigma(a_s)$.

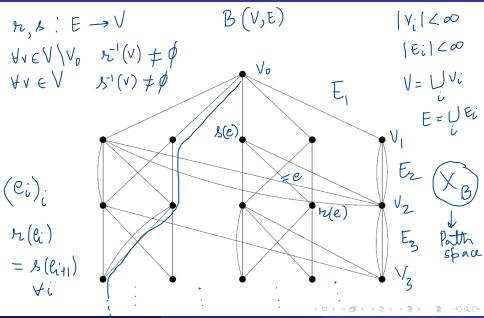
$$w = \underbrace{\underbrace{b_1 \ b_2 \ b_3}_{\text{suffix of}}}_{\sigma(a_1)} \underbrace{\underbrace{b_4 \ b_5 \ b_6 \ b_7}_{= \sigma(a_2)}}_{w_2} \dots \underbrace{\underbrace{b_{N-4} \ b_{N-3} \ b_{N-2}}_{= \sigma(a_{s-1})}}_{w_s} \underbrace{\underbrace{b_{N-1} \ b_N}_{\text{prefix of}}}_{\sigma(a_s)}$$

Example: The squared drunken man substitution:

$$n\mapsto (n-2)\,n\,n\,(n+2)\,;\;n\in 2\mathbb{Z}$$

is left determined (see [F06]).

Example: a (non-simple, finite rank) Bratteli diagram



Shrey Sanadhya (Ulowa)

B-V model for infinite substitutions

March 10, 2021

Definition

A Bratteli diagram is a graded infinite graph B = (V, E) with the vertex set $V = \bigsqcup_{i \ge 0} V_i$ and edge set $E = \bigsqcup_{i \ge 1} E_i$: 1) $V_0 = \{v_0\}$ is a single point;

2) V_i and E_i are finite sets for every i;

3) edges E_i connect V_{i-1} to V_i : there exist maps r (range) and s (source) from E to V such that $r(E_i) \subseteq V_i, s(E_i) \subseteq V_{i-1}$, and $s^{-1}(v) \neq \emptyset$; $r^{-1}(v') \neq \emptyset$ for all $v \in V$ and $v' \in V \setminus V_0$.

- *B* is stationary if it repeats itself below the first level.
- B is of finite rank if for all $n \ge 1$, $|V_n| \le k$ for some positive integer k.
- We say a finite rank diagram B has rank d if d is the smallest integer such that $|V_n| = d$ infinitely often.

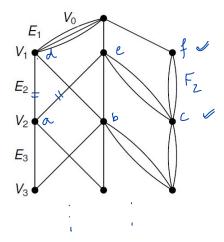
The incidence matrix F_n is a $|V_n| \times |V_{n-1}|$ matrix with entries $\overbrace{f_{v,w}^{(n)}}^{(n)} = |\{e \in E_n : s(e) = w, r(e) = v\}|, v \in V_n, w \in V_{n-1}.$

A Bratteli diagram is called simple if $\forall n \exists m > n$ such that $F_m \cdots F_{n+1} > 0$ (all entries are positive).

A finite or infinite sequence of edges $(e_i : e_i \in E_i)$ such that $r(e_i) = s(e_{i+1})$ is called a finite or infinite path. Let X_B be the set of infinite paths starting at the top vertex v_0 . Then X_B a 0-dimensional compact metric space w.r.t. the topology generated by cylinder sets

$$[\overline{e}] := \{ x \in X_B : x_i = e_i, i = 0, \dots, n \}.$$

Incidence matrix (Example)

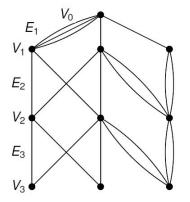


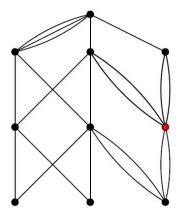
The diagram is *stationary* with incidence matrix

$$F = \begin{bmatrix} a \\ 1^{e} & 1^{e} & 0^{e} \\ 1 & 1^{e} & 0^{e} \\ 1 & 1 & 0 \\ 0 & 2 & 2 \end{bmatrix}$$

The sequence (F_n) of incidence matrices determine the structure of a Bratteli diagram.

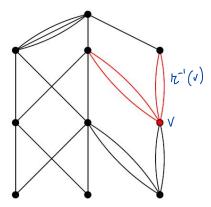
Topology on the path space X_B : two paths are close if they agree on a large initial segment.





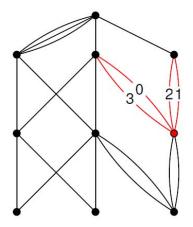
• Take a vertex $v \in V \setminus V_0$.

March 10, 2021

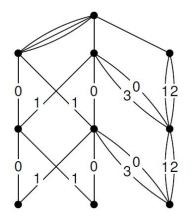


- Take a vertex $v \in V \setminus V_0$.
- Consider the set $r^{-1}(v)$.

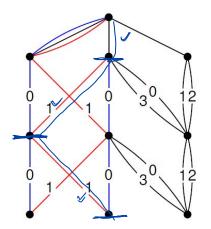
March 10, 2021



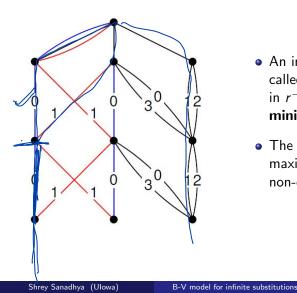
- Take a vertex $v \in V \setminus V_0$.
- Consider the set $r^{-1}(v)$.
- Enumerate edges from $r^{-1}(v)$



- Take a vertex $v \in V \setminus V_0$.
- Consider the set $r^{-1}(v)$.
- Enumerate edges from $r^{-1}(v)$
- Do the same for every vertex.

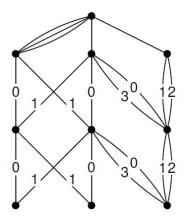


An infinite path x = (x_n) is called maximal if x_n is maximal in r⁻¹(r(x_n)). Similarly, minimal paths are defined.



- An infinite path x = (x_n) is called maximal if x_n is maximal in r⁻¹(r(x_n)). Similarly, minimal paths are defined.
- The sets X_{max} and X_{min} of all maximal and minimal paths are non-empty and closed.

Vershik map

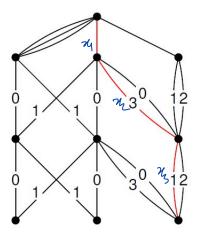


Define the Vershik map

$$arphi_B:X_B\setminus X_{\mathsf{max}} o X_B\setminus X_{\mathsf{min}}:$$

March 10, 2021

Vershik map

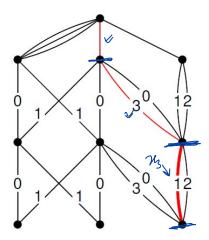


Define the Vershik map

$$\varphi_B: X_B \setminus X_{\mathsf{max}} \to X_B \setminus X_{\mathsf{min}}:$$

Fix
$$x \in X_B \setminus X_{\max}$$
.

Vershik map



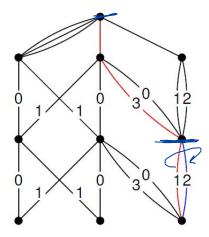
Define the Vershik map

$$arphi_B:X_B\setminus X_{\mathsf{max}} o X_B\setminus X_{\mathsf{min}}:$$

Fix $x \in X_B \setminus X_{max}$.

Find the first k with non-maximal x_k .

Vershik map



Define the Vershik map

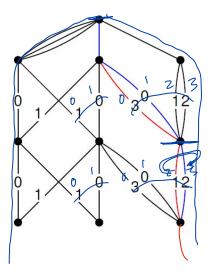
$$\varphi_B: X_B \setminus X_{\mathsf{max}} \to X_B \setminus X_{\mathsf{min}}:$$

Fix
$$x \in X_B \setminus X_{max}$$
.

Find the first k with non-maximal x_k .

Take x_k to its successor \overline{x}_k .

Vershik map



Define the Vershik map

$$\varphi_B : X_B \setminus X_{\max} \to X_B \setminus X_{\min} :$$

Fix $x \in X_B \setminus X_{\max}$.

Find the first k with non-maximal x_k .

Take x_k to its successor \overline{x}_k .

Connect $s(\overline{x}_k)$ to the top vertex V_0 by the minimal path.

(p_R (red) = blue

Vershik map

- φ_B is defined everywhere on $X_B \setminus X_{\mathsf{max}}$
- $\varphi_B(X_B \setminus X_{\max}) = X_B \setminus X_{\min}$

Definition

If the map φ_B can be extended to a homeomorphism of X_B such that $\varphi_B(X_{\max}) = X_{\min}$, then (X_B, φ_B) is called a Bratteli-Vershik system and φ_B is called the Vershik map.

Question:

Under what conditions on a Bratteli diagram does the Vershik map exist?

Vershik map

- φ_B is defined everywhere on $X_B \setminus X_{\mathsf{max}}$
- $\varphi_B(X_B \setminus X_{\max}) = X_B \setminus X_{\min}$

Definition

If the map φ_B can be extended to a homeomorphism of X_B such that $\varphi_B(X_{\max}) = X_{\min}$, then (X_B, φ_B) is called a Bratteli-Vershik system and φ_B is called the Vershik map.

Question:

Under what conditions on a Bratteli diagram does the Vershik map exist?

Answer:

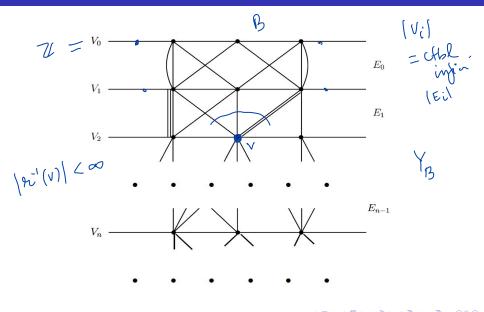
If a Bratteli diagram is simple, then the Vershik map **always** exists (e.g., use the left-to-right order).

Shrey Sanadhya (Ulowa)

Collection of results (partial list)

- Herman, Putnam, and Skau [HPS'92] showed that for every minimal Cantor dynamical system (X, T), there exists a simple, ordered Bratteli diagram B such that the corresponding Vershik map φ_B is conjugate to T.
- Bezuglyi, Dooley and Medynets (2005), Medynets (2006) extended above result to **aperiodic** Cantor dynamical systems.
- Giordano, Putnam, and Skau (1995) classified all minimal homeomorphisms of Cantor set with respect to orbit equivalence. By [HPS'92] it suffices to classify Vershik maps.
- Forrest (1997), Durand, Host, Skau (1999) described completely the class of dynamical systems that are represented by simple stationary Bratteli diagram. These are **minimal substitution dynamical systems**.

Generalized Bratteli diagrams example



March 10, 2021

Generalized Bratteli diagrams (GBD)

Generalized Bratteli diagram B = (V, E) is a countable graded graph B = (V, E) with $V = \bigsqcup_{i \ge 0} V_i$ and $E = \bigsqcup_{i \ge 0} E_i$ such that,

(*i*) The set V_i , for $i \ge 0$ is countably infinite (identified with \mathbb{Z}). E_i is the set of edges between the levels V_i and V_{i+1} ;

(ii) range map r and source map s from E to V such that $r(E_i) \subset V_i$, $s(E_i) \subset V_{i-1}$, $s^{-1}(v) \neq \emptyset$ for all $v \in V$, and $r^{-1}(v) \neq \emptyset$ for all $v \setminus V_0$;

(iii) for every $v \in V \setminus V_0$, the set $r^{-1}(v)$ is finite. For every $w \in V_i$, $v \in V_{i+1}$, the set of edges (denoted E(w, v)) between w and v is finite (or empty);

(iv) Put $|E(w, v)| = f_{vw}^{i}$. This defines a sequence of infinite *incidence* matrices $(F_n; n \in \mathbb{N}_0)$ whose entries are non-negative integers:

$$F_i = (f_{vw}^{(i)} : v \in V_{i+1}, w \in V_i), \ f_{vw}^{(i)} \in \mathbb{N}_0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Generalized Bratteli diagram (GBD) cont.

- If $F_n = F$ for all $n \in \mathbb{N}_0$, then diagram is called *stationary*.
- We denote by Y_B the set of infinite paths in B = (V, E).
- Y_B is a Polish space using topology generated by cylinder sets $[\overline{e}] := \{ x \in Y_B : x_i = e_i, i = 0, \dots, n \}.$
- B = (V, E) together with a linear order on $r^{-1}(v)$ for every $v \in V \setminus V_0$, is called an ordered generalized Bratteli diagram denoted by B = (V, E, >).
- For an ordered diagram $B = (V, E, \geq)$, we define Vershik map , Std Bord Spe $\varphi: Y_B \to Y_B$ as before.
- (Y_B, φ) is a Borel dynamical system.

Theorem (Bezuglyi, Dooley, Kwiatkowski (2006))

Let T be an aperiodic Borel automorphism of (X, \mathcal{B}) . Then there exists an ordered generalized Bratteli diagram $B = (V, E, \geq)$ and a Vershik map $\varphi_{B}: Y_{B} \rightarrow Y_{B}$ such that (X, T) is isomorphic to (Y_{B}, φ_{B}) .

Back to infinite substitution : Kakutani-Rokhlin towers

For $a_i \in \mathcal{A}$; $i = \{1, ..., n\}$, we denote by $[a_1...a_n]$ a cylinder set of length n.

Theorem 1. Let σ be a *left determined substitution* on countably infinite alphabet \mathcal{A} and (X_{σ}, T) be the corresponding subshift. Then for any $n \in \mathbb{N}$, we have a partition of X_{σ} into K-R towers

$$X_{\sigma} = \bigsqcup_{\substack{a_1...,a_n \in \mathcal{L}_n(\sigma) \\ k=0}} \prod_{k=0}^{h_1+...+h_n-1} T^k[\sigma(a_1...,a_n)]$$

where $h_k = |\sigma a_k|$ for $k \in \{1,...,n\}$.

Back to infinite substitution : Kakutani-Rokhlin towers

For $a_i \in \mathcal{A}$; $i = \{1, ..., n\}$, we denote by $[a_1...a_n]$ a cylinder set of length n.

Theorem 1. Let σ be a *left determined substitution* on countably infinite alphabet \mathcal{A} and (X_{σ}, T) be the corresponding subshift. Then for any $n \in \mathbb{N}$, we have a partition of X_{σ} into K-R towers

$$X_{\sigma} = \bigsqcup_{\substack{a_1...,a_n \in \mathcal{L}_n(\sigma) \\ k=0}} \bigsqcup_{k=0}^{h_1+...+h_n-1} T^k[\sigma(a_1...,a_n)]$$

where $h_k = |\sigma a_k|$ for $k \in \{1, ..., n\}$.

Theorem 2. Let σ be *left determined* and **bounded length** substitution on a countable infinite alphabet A, and (X_{σ}, T) be the corresponding subshift. Then for every $n \in \mathbb{N}$, we have a partition of X_{σ} into K-R towers

$$X_{\sigma} = \bigsqcup_{a_i \in \mathcal{A}} \bigsqcup_{k=0}^{h_i^n - 1} T^k[\sigma^n a_i], \text{ where } |\sigma a_i| = h_i.$$

1

We used *Theorem 1* and *Theorem 2* to obtain:

Corollary 3. Let σ be a left determined substitution of bounded size on countably infinite alphabet A and (X_{σ}, T) be the corresponding subshift. Then there exists two sequence (A_n) and (B_n) of Borel sets with $A_0 = B_0 = X_{\sigma}$ and for n > 0,

$$A_n = \bigsqcup_{a_i \in \mathcal{A}} [\sigma^n a_i] \text{ and } B_n = \bigsqcup_{a_1 \dots a_n \in \mathcal{L}_n(\sigma)} [\sigma(a_1 \dots a_n)].$$

such that

(a)
$$X_{\sigma} = A_0 \supset A_1 \supset A_2 \supset A_3...$$
 and $X_{\sigma} = B_0 \supset B_1 \supset B_2 \supset B_3...$.
(b) Both $\bigcap_{n \in \mathbb{N}} A_n$ and $\bigcap_{n \in \mathbb{N}} B_n$ are countably infinite.
(c) A_n and B_n are complete *T*-sections for each $n \in \mathbb{N}$.
(d) For each $n \in \mathbb{N}$ every point in A_n and B_n is recurrent.

Bratteli-Vershik models for substitution on infinite alphabet

Using Corollary 1, (sets B_n) we obtain Bratteli-Vershik model for left determined substitution of bounded size on countably infinite alphabet.

Theorem 4. Let σ be a left determined substitution of bounded size on an infinite alphabet \mathcal{A} and (X_{σ}, T) be the corresponding subshift. Then there exists an ordered generalized-Bratteli diagram $B = (V, E, \geq)$ and a Vershik map $\varphi : Y_B \to Y_B$ such that (X_{σ}, T) is isomorphic to (Y_B, φ) . Using Corollary 1, (sets B_n) we obtain Bratteli-Vershik model for left determined substitution of bounded size on countably infinite alphabet.

Theorem 4. Let σ be a left determined substitution of bounded size on an infinite alphabet \mathcal{A} and (X_{σ}, T) be the corresponding subshift. Then there exists an ordered generalized-Bratteli diagram $B = (V, E, \geq)$ and a Vershik map $\varphi : Y_B \to Y_B$ such that (X_{σ}, T) is isomorphic to (Y_B, φ) .

Using Corollary 1, (sets A_n) we obtain stationary Bratteli-Vershik model.

Theorem 5. Let σ be a left determined substitution of bounded size on an infinite alphabet \mathcal{A} and (X_{σ}, T) be the corresponding subshift. Then there exists a stationary ordered generalized-Bratteli diagram $\tilde{B} = (\tilde{V}, \tilde{E}, \geq)$ and a Vershik map $\tilde{\varphi} : Y_{\tilde{B}} \to Y_{\tilde{B}}$ such that (X_{σ}, T) is isomorphic to $(Y_{\tilde{B}}, \tilde{\varphi})$.

Theorem 6. (Generalized PF Theorem, see [K 98]). Suppose F is a countable, non-negative, irreducible, aperiodic matrix. Suppose that F is recurrent. Then there exists a Perron-Frobenius eigenvalue $\overline{\lambda} = \lim_{n \to \infty} (f_{ij}^{(n)})^{\frac{1}{n}} > 0$ such that:

(a) there exist unique strictly positive left ℓ and right r eigenvectors corresponding to λ ,

(b) $\ell \cdot r = \sum_{i} \ell_{i} r_{i} < \infty$ if and only if *F* is positive recurrent.

Theorem 7. Let B = B(F) be a stationary generalized-Bratteli diagram such that the incidence matrix F, is irreducible, aperiodic and recurrent. Then there exists a tail invariant measure μ on the path space Y_B .

(1) Let $[\bar{e}] = [e_0e_1....e_{n-1}]$ denote a cylinder set of length *n* such that $r(\bar{e}) = v \in V_n$, then we define :

$$\mu([\bar{e}]) = \frac{\ell_v}{\lambda^n}.$$

where ℓ is the left eigenvector corresponding to Perron value λ of F.

Theorem 7. Let B = B(F) be a stationary generalized-Bratteli diagram such that the incidence matrix F, is irreducible, aperiodic and recurrent. Then there exists a tail invariant measure μ on the path space Y_B .

(1) Let $[\bar{e}] = [e_0 e_1 \dots e_{n-1}]$ denote a cylinder set of length *n* such that $r(\bar{e}) = v \in V_n$, then we define :

$$\mu([\bar{e}]) = \frac{\ell_v}{\lambda^n}.$$

where ℓ is the left eigenvector corresponding to Perron value λ of F.

(2) The measure μ is finite if and only if the left eigenvector $\ell = (\ell_v)$ has the property $\sum_{\nu} \ell_{\nu} < \infty$.

From tail-invariant to shift-invariant measure

Since dynamical systems (X_{σ}, T) and (Y_{B}, φ) are isomorphic, we can push the tail-invariant measure to shift-invariant measure.

Corollary 8. Let σ be a left determined substitution of bounded size on an infinite alphabet A and (X_{σ}, T) be the corresponding subshift. Assume that the countably infinite substitution matrix M is irreducible, aperiodic, and recurrent.

(1) Then there exists a shift-invariant measure ν on X_{σ} .

(2) Let ℓ be the left eigenvector of M corresponding to the Perron value λ of M. The measure ν is finite if and only if the left eigenvector $\ell = (\ell_i)$ has the property $\sum_i \ell_i < \infty$.

Theorem 9. Let σ be a left determined substitution of bounded size on an infinite alphabet A such that the substitution matrix M is irreducible, aperiodic, and recurrent. Then the shift-invariant probability measure ν (defined in Corollary 7) on X_{σ} is ergodic.

Proof Sketch. We work with the stationary Bratteli-Vershik model (B, φ, \geq) of (X_{σ}, T) . Since μ is probability, we have $\sum_{v} \ell_{v} = 1$. *M* is irreducible : For all i, j there exists some *n* such that $m_{ij}^{(n)} > 0$. Moreover, for a fixed state *i* there exists *k* such that $m_{ii}^{(n)} > \overline{0}$ for all $n \geq k$. **Theorem 9.** Let σ be a left determined substitution of bounded size on an infinite alphabet A such that the substitution matrix M is irreducible, aperiodic, and recurrent. Then the shift-invariant probability measure ν (defined in Corollary 7) on X_{σ} is ergodic.

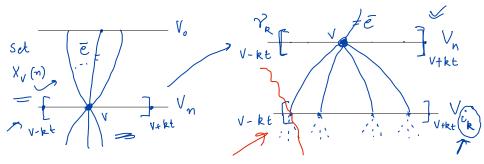
Proof Sketch. We work with the stationary Bratteli-Vershik model (B, φ, \geq) of (X_{σ}, T) . Since μ is probability, we have $\sum_{\nu} \ell_{\nu} = 1$.

M is irreducible : For all *i*, *j* there exists some *n* such that $m_{ij}^{(n)} > 0$. Moreover, for a fixed state *i* there exists *k* such that $m_{ii}^{(n)} > 0$ for all $n \ge k$. Let $[\bar{e}]$ be a cylinder set such that $r(\bar{e}) = v \in V_n$. We will show that $\mu(\mathcal{R}([\bar{e}])) = 1$, where \mathcal{R} denotes the tail-equivalence relation.

For n > 0 and $v \in V_n$ we define, $X_v(n) = \{x \in Y_B : r(x_{n-1}) = v \in V_n\}$.

For a fixed $k \in \mathbb{N}$ and \underline{t} as in the definition of bounded size the set $\mathcal{V}_{k} = \{v - kt, ..., v + kt\}$ denotes a set of 2kt + 1 vertices.

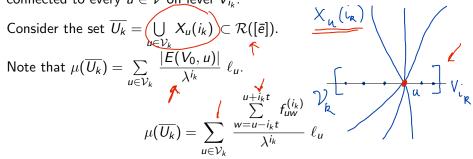
Since *M* is irreducible, there exists a level (say V_{i_k} , $i_k > n$) such that *v* is connected to every $u \in \mathcal{V}$ on level V_{i_k} .



For n > 0 and $v \in V_n$ we define, $X_v(n) = \{x \in Y_B : r(x_{n-1}) = v \in V_n\}$.

For a fixed $k \in \mathbb{N}$ and t as in the definition of bounded size the set $\mathcal{V}_k = \{v - kt, ..., v + kt\}$ denotes a set of 2kt + 1 vertices.

Since *M* is irreducible, there exists a level (say V_{i_k} , $i_k > n$) such that *v* is connected to every $u \in \mathcal{V}$ on level V_{i_k} .



By switching the order of summations

der of summations

$$\mu(\overline{U_k}) = \sum_{w=u-i_kt}^{u+i_kt} \underbrace{\sum_{u\in\mathcal{V}_k} (\ell_u) \cdot (f_{uw}^{(i_k)})}_{\lambda^{i_k}} \qquad = \begin{array}{c} \downarrow \cdot \\ \downarrow \cdot \\ \lambda^{i_k} \end{array}$$

For $\epsilon > 0$, there exists $k \in \mathbb{N}$ such that

$$\sum_{u \in \mathcal{V}_k} (\ell_u) \cdot (f_{uw}^{(i_k)}) > \underline{\lambda^{i_k} \ell_w} - \epsilon$$

Hence,
$$\mu(\overline{U_k}) > \sum_{w=u-i_kt}^{u+i_kt} \frac{\lambda^{i_k}\ell_w - \epsilon}{\lambda^{i_k}} = \sum_{w=u-i_kt}^{u+i_kt} \ell_w - \sum_{w=u-i_kt}^{u+i_kt} \frac{\epsilon}{\lambda^{i_k}}$$

$$\mu(\overline{U_k}) > \sum_{w=u-i_kt}^{u+i_kt} \ell_w - \frac{\epsilon}{\lambda^{i_k}} (2i_kt+1),$$

 $k
ightarrow \infty$, $i_k
ightarrow \infty$, observe that

$$\sum_{w=u-i_kt}^{u+i_kt} \ell_w \longrightarrow \sum_{w \in \mathbb{Z}} \ell_w = 1 \text{ and } \frac{(2i_kt+1)}{\lambda^{i_k}} \longrightarrow 0,$$

Thus $\mu(\overline{U_k}) \longrightarrow 1$. Since $\mu(\overline{U_k}) \subset \mathcal{R}([\overline{e}])$, we get $\mu(\mathcal{R}([\overline{e}])) = 1$.

Thus for any two open sets $\mathcal{O}_1, \mathcal{O}_2 \in Y_B$, there exists $n \in \mathbb{Z}$ such that $\mu(\varphi_B^n(\mathcal{O}_1) \cap \mathcal{O}_2) > 0 \Longrightarrow$

For any two Borel sets A_1, A_2 , there exists $n \in \mathbb{Z}$ such that $\mu(\varphi_B^n(A_1) \cap A_2) > 0 \Longrightarrow \mu$ is ergodic.

Let σ be a left determined substitution of bounded size on an infinite alphabet A such that the substitution matrix M, is irreducible and recurrent, then following could be said about the then the shift-invariant measure ν defined earlier

Substitution matrix	$\sum_{v} \ell_{v}$	Shift-invariant measure		
		Туре	Ergodic	Unique
Positive recurrent	Finite	Finite 🕔	Yes	Yes BET
Null recurrent	Finite	Finite	√Yes	??
Positive recurrent	Infinite	σ -finite	?? 🖌	If it is ergodic ud
				then it is unique.
Null recurrent	Infinite	σ -finite	??	??
			1	ſ

Example

One step fwd, two step back substitution on \mathbb{Z} . Define σ by

$$-1 \mapsto -2 - 1 \ 0 \ ; \ 0 \mapsto -1 \ 0 \ 1$$

$$n \mapsto (n - 1)(n + 1)(n + 1) \ ; \ n \leq -2$$

$$n \mapsto (n - 1)(n - 1)(n + 1) \ ; \ n \geq 1$$
This substitution is left determined, with irreducible, positive recurrent matrix; $\lambda = 3$; left e.v, $\ell = (\dots \frac{1}{2^4}, \frac{1}{2^3}, \frac{1}{2^2}, \frac{1}{2}, 1, 1, \frac{1}{2}, \frac{1}{2^2}, \frac{1}{2^3}, \dots)$

[F06] Sébastien Ferenczi. Substitution dynamical systems on infinite alphabets. Ann. Inst. Fourier (Grenoble), 56:2315-2343, 2006.

[K 98] Bruce P. Kitchens. Symbolic Dynamics. One-sided, Two-sided and Countable State Markov Shifts. Springer Universitext. ISBN 3-540-62738-3. 1998.

⁷ Thank You

Addendum

Some definitions from theory of Stochastic Process

- Countably infinite non-negative matrix F is called *irreducible* if for all $i, j \in \mathbb{Z}$ there exists some $n \in \mathbb{N}$ such that $f_{ii}^{(n)} > 0$.
- An irreducible matrix F has period p if, for all vertices $i \in \mathbb{Z}$, $p = \gcd\{\ell : f_{ii}^{(\ell)} > 0\}$. If p = 1, the matrix F is called *aperiodic*.
- An irreducible aperiodic matrix F admits a *Perron-Frobenius* eigenvalue λ , defined by, $\lambda = \lim_{n \to \infty} (f_{ii}^{(n)})^{\frac{1}{n}}$ (independent of i).
- An irreducible aperiodic matrix F is called *transient* if $\sum_{n} f_{ij}^{(n)} \lambda^{-n} < \infty$; otherwise, F is called *recurrent*.
- For a recurrent matrix F, define $\ell_{ij}(1) = f_{ij}$ and $\ell_{ij}(n+1) = \sum_{k \neq i} \ell_{ik}(n) f_{kj}$.
- The matrix F is called *null-recurrent* if $\sum_{n} n\ell_{ii}(n)\lambda^{-n} < \infty$; otherwise F is called *positive recurrent*.